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Abstract

The evaluation of f(A)b, where A€ C"" beC"and f:CDD —Cisa
function for which f(A) is defined, is a common computational task. Besides
the solution of linear systems of equations, which involves the reciprocal func-
tion f(¢) = 1/¢, by far the most important application is the time evolution
of a system under a linear operator, in which case f(¢) = fi({) = €' and
time acts as a parameter t. Other applications arising in the context of solving
differential equations require the evaluation of f(A)b for the square root and
trigonometric functions. Further applications include identification problems
for semigroups involving the logarithm and lattice quantum chromodynamics
simulations requiring the evaluation of the matrix sign function.

In this overview talk, we first discuss the definition, some basic properties and
the main applications of matrix functions (see, e.g., [3, Chapter 9]). We then
review a few old and new numerical algorithms for computing f(A) (cf. [1]).
The main emphasis however is put on Krylov subspace approximations to
f(A)b (cf. [4]) which have to be used in many of the applications mentioned
above. The reason is that the matrices A arising there are so large that eval-
uating f(A)b by first computing f(A) is generally unfeasible. We discuss im-
plementation issues of these methods (involving restarts, preconditioning and
stopping criteria, see [2]) as well as their convergence behavior whose analy-
sis is based on results from complex polynomial approximation and potential
theory.
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