Randomized Algorithms in Numerical Linear Algebra

Yuji Nakatsukasa
Oxford University

Based on joint work with Maike Meier (Oxford), Joel Tropp (Caltech) references: arXiv 2111.00113, 2009.11392, 2105.07388
JSIAM Applied Maths Seminar 2022

Algorithms in Numerical Linear Algebra (NLA)

For $A x=b, A x=\lambda(B) x, A=U \Sigma V^{T}$

1. Classical (dense) algorithms (LU, QR, Golub-Kahan)

- $(+)$ Incredibly reliable, backward stable
- (-) Cubic complexity $O\left(n^{3}\right)$

2. Iterative (e.g. Krylov) algorithms

- (+) Fast convergence for 'good' matrices: clustered eigenvalues or (GMRES) or well-conditioned (LSQR)
- (-) If not, need preconditioner

3. Randomized algorithms

- (+) Next slide(s)
- (-) Lack of reproducibility, might lose nice properties, e.g. structure

What can randomization do for you?

1. Sketch and solve/precondition

- least-squares [Rokhlin-Tygert (08)], [Drineas-Mahoney-Muthukrishnan-Sarlós (10)], [Avron-Maymounkov-Toledo (10)], [Meng-Saunders-Mahoney 14]

2. Near-optimal solution with lightning speed

- e.g. SVD [Halko-Martinsson-Tropp (11)], [Woodruff (14)]

3. Sample to approximate

- Monte Carlo style; often comes with error estimates
- e.g. matrix multiplication [Drineas-Kannan-Mahoney (06)], trace estimation [Avron-Toledo (11)], [Musco-Musco-Woodruff (20)]

4. Avoid pathological situations by perturbation/blocking

- e.g. eigenvalues [Banks-Vargas-Kulkarni-Srivastava (19)], block Lanczos [Musco-Musco 15], [Tropp 18]

What can randomization do for you?

1. Sketch and solve/precondition Part I: linear/eigen solver

- least-squares [Rokhlin-Tygert (08)], [Drineas-Mahoney-Muthukrishnan-Sarlós (10)], [Avron-Maymounkov-Toledo (10)], [Meng-Saunders-Mahoney 14]

2. Near-optimal solution with lightning speed Part II: low-rank SVD

- e.g. SVD [Halko-Martinsson-Tropp (11)], [Woodruff (14)]

3. Sample to approximate (Part III: rank estimation)

- Monte Carlo style; often comes with error estimates
- e.g. matrix multiplication [Drineas-Kannan-Mahoney (06)], trace estimation [Avron-Toledo (11)], [Musco-Musco-Woodruff (20)]

4. Avoid pathological situations by perturbation/blocking

- e.g. eigenvalues [Banks-Vargas-Kulkarni-Srivastava (19)], block Lanczos [Musco-Musco 15], [Tropp 18]

Sketching: Key idea in randomized linear algebra

Sketching for least-squares problems

For $A: n \times k, n \gg k$

With "reasonable/random" sketch $S \in \mathbb{C}^{s \times n}(s>k$, say $s=2 k)$,

$$
(1-\epsilon)\|A v-b\|_{2} \leq\|S(A v-b)\|_{2} \leq(1+\epsilon)\|A v-b\|_{2},
$$

for some ϵ (not small, e.g. $\epsilon=\frac{1}{2}$) "subspace embedding". Hence the sketched solution \hat{x} satisfies

$$
\|A \hat{x}-b\|_{2} \leq \frac{1+\epsilon}{1-\epsilon}\|A x-b\|_{2}
$$

- if $\|A x-b\|_{2}$ is small, \hat{x} is a great solution!
- $S A$ in $O(n k \log n)$ cost: SRFT, HRFT [Cartis-Fiala-Shao 21],

Explaining why sketching works via M-P

Marchenko-Pastur: 'Rectangular random matrices are well-conditioned'

density $\sim \frac{1}{x} \sqrt{(\sqrt{m}+\sqrt{n})-x)(x-(\sqrt{m}-\sqrt{n})}$, support $[\sqrt{m}-\sqrt{n}, \sqrt{m}+\sqrt{n}]$
Claim: $\|A v-b\|_{2} \approx\|S(A v-b)\|_{2}$ for all v ($\approx:$ 'same up to $O(1)$ factor')

- Let $[A, b]=Q R . S[A, b]=(S Q) R$. Can write $\|A v-b\|_{2}=\|Q w\|_{2}$ and $\|S(A v-b)\|_{2}=\|(S Q) w\|_{2}$.
- Now $S Q$ is rectangular+random $\Rightarrow \sigma_{i}(S Q) \approx 1$ by M-P.
- Hence $\|(S Q) w\|_{2} \approx\|Q w\|_{2}$ for all w.

Related to J-L Lemma, RIP, oblivious subspace embedding etc

GMRES for $A x=b$ [Saad-Schulz 86]

Minimize residual in Krylov subspace $\mathcal{K}_{d}(A, b):=\operatorname{span}\left(b, A b, \ldots, A^{d-1} b\right)$

$$
x_{d}=\operatorname{argmin}_{x \in \mathcal{K}_{d}(A, b)}\|A x-b\|_{2}
$$

i.e., find solution of form $x_{d}=P_{d-1}(A) b, P_{d-1}$ polynomial deg $\leq d-1$

GMRES for $A x=b$ [Saad-Schulz 86]

Minimize residual in Krylov subspace $\mathcal{K}_{d}(A, b):=\operatorname{span}\left(b, A b, \ldots, A^{d-1} b\right)$

$$
x_{d}=\operatorname{argmin}_{x \in \mathcal{K}_{d}(A, b)}\|A x-b\|_{2}
$$

i.e., find solution of form $x_{d}=P_{d-1}(A) b, P_{d-1}$ polynomial deg $\leq d-1$

Arnoldi process: finds orthonormal basis Q_{d} for $\mathcal{K}_{d}(A, b)$
and write $x_{d}=Q_{d} y$, solve

$$
\begin{aligned}
\min _{y}\left\|A Q_{d} y-b\right\|_{2} & =\min _{y}\left\|Q_{d+1} \tilde{H}_{d} y-b\right\|_{2} \\
& =\min _{y}\left\|\left[\begin{array}{c}
\tilde{H}_{d} \\
0
\end{array}\right] y-\right\| b\left\|_{2} e_{1}\right\|_{2}, \quad e_{1}=[1,0, \ldots, 0]^{T}
\end{aligned}
$$

- Reduces to Hessenberg least-squares, $O\left(d^{2}\right)$ work
- Overall, $d A$-mult. $+O\left(n d^{2}\right)$ Arnoldi orthogonalization $+O\left(d^{2}\right)$ Hessenberg solve.
- Orthogonalization $O\left(n d^{2}\right)$ expensive \rightarrow restarted GMRES

Does sketching help in GMRES?

- Apparently NOT, as \tilde{H}_{d} is almost square+full-rank in

Does sketching help in GMRES?

- Apparently NOT, as \tilde{H}_{d} is almost square+full-rank in

- But Q_{d} need not be orthonormal! Instead, we can find basis B_{d} s.t. $\operatorname{span}\left(B_{d}\right)=\operatorname{span}\left(Q_{d}\right)$ and solve

- $x_{d}=B_{d} y$ is still the GMRES solution

Does sketching help in GMRES?

- Apparently NOT, as \tilde{H}_{d} is almost square+full-rank in

- But Q_{d} need not be orthonormal! Instead, we can find basis B_{d} s.t. $\operatorname{span}\left(B_{d}\right)=\operatorname{span}\left(Q_{d}\right)$ and solve

- $x_{d}=B_{d} y$ is still the GMRES solution
- $A B_{d}$ is $n \times d$, ripe for sketching! Great if GMRES residual small Does this buy us anything?

Non-orthogonal linear algebra

- In GMRES, B_{d} orthonormal; $O\left(n d^{2}\right)$ cost
- Not necessary! Works fine as long as $\kappa_{2}\left(B_{d}\right)<u^{-1} \approx 10^{16}$
- This offers enormous flexibility in choice of basis B_{d}, eliminating need for Arnoldi orthogonalization
- Traditionally, want $\kappa_{2}\left(B_{d}\right)=1+O(\epsilon)$
- Careful analysis (in Lanczos) shows $\kappa_{2}\left(B_{d}\right)=1+O(\sqrt{\epsilon})$ suffices
- Sometimes, $\kappa_{2}\left(B_{d}\right)=O(1)$ is good enough
- Here we're a lot more flexible; B_{d} full rank $\kappa_{2}\left(B_{d}\right) \lesssim 10^{15}$
- Forming $\left[b, A b, A^{2} b, \ldots\right]$ is still bad idea-explore alternatives

Truncated orthogonalization

$b_{1}=b /\|b\|_{2}$, and for $j=2,3, \ldots$, iteratively form

$$
b_{j}=w_{j} /\left\|w_{j}\right\|_{2} \quad \text { where } \quad w_{j}=\left(I-b_{j-1} b_{j-1}^{*}-\cdots-b_{j-k} b_{j-k}^{*}\right)\left(A b_{j-1}\right)
$$ for a fixed k (e.g. $k=2,4$)

- Orthogonalize only against last k vectors
- When A symmetric, reduces to Lanczos with $k=2$
- Orthogonalization cost $O(n d)$ rather than $O\left(n d^{2}\right)$ after d GMRES steps
- Often (not always) works quite well in practice wrt $\kappa_{2}\left(B_{d}\right)$ growth

Krylov basis via Chebyshev recurrence

$$
b_{2}=A b_{1} ; \quad b_{i}=2 A b_{i-1}-b_{i-2} \quad \text { for } i=3, \ldots, d .
$$

- $b_{i}=T_{i-1}(A) b_{1}, T_{i}$: Chebyshev polynomial
- We obtain $A B$ as a by-product.
- Shift+scale needed to adapt to the spectrum of A.
- No orthogonalization necessary-excellent efficiency (when it works)
- Block version trivially possible

GMRES vs. sGMRES for $A x=b$

A : $n \times n, d$: Krylov dimension, k : truncated orthogonalization para.
Typically $k \ll d \ll n$.

	Matrix access	Form basis	Sketch	LS solve	Form soln.
Std. GMRES	$d T_{\text {matvec }}$	$n d^{2}$	-	d^{2}	$n d$
sGMRES- k	$d T_{\text {matvec }}$	$n d k$	$n d \log d$	d^{3}	$n d$
sGMRES-Cheb	$d T_{\text {matvec }}$	$n d$	$n d \log d$	d^{3}	$n d$

Experiments with sGMRES: FEM matrix

IFISS test problem (convection-diffusion)

- sGMRES ($k=4$-truncated) achieves $70 \times$ speedup over GMRES, comparable to GMRES-10 (restarted every 10 itereations)
- Accuracy of sGMRES is nearly identical to GMRES

Experiments with sGMRES, PSD case

Discretized Laplacian

- Almost CG speed when $A \succ 0$!
- Of course, sGMRES does not require $A \succ 0$

"CG speed+GMRES flexibility"

Cautionary note: ill-conditioning

Sometimes $\kappa_{2}(B)$ grows too fast: FS 6801 from Matrix Market

- Stagnation of sGMRES is purely a numerical issue
- Constructing full-rank basis $\kappa_{2}\left(B_{d}\right)<u^{-1}$ is crucial open problem
- deflation
- orthogonalize the sketch
- restart once $\kappa_{2}\left(B_{d}\right) \gtrsim u^{-1}$ (rather than, say $d=100$), etc.

Eigenvalue problems: Rayleigh-Ritz

$A x=\lambda x$

- If A modest size $\lesssim 5000$, standard QR alg. is amazing
- For larger problems, subspace methods: find subspace $B \in \mathbb{R}^{n \times d}$ that approximately contains desired eigenvector(s), and solve.

Eigenvalue problems: Rayleigh-Ritz

$A x=\lambda x$

- If A modest size $\lesssim 5000$, standard QR alg. is amazing
- For larger problems, subspace methods: find subspace $B \in \mathbb{R}^{n \times d}$ that approximately contains desired eigenvector(s), and solve.

Classical approach: Rayleigh-Ritz (RR); $B=Q R$ (if B not orthonormal), and solve small eigenproblem

$$
Q^{T} A Q y=\lambda y
$$

$(\lambda, Q y)$ is approximate eigenpair (Ritz pair). Cost (at least) $O\left(n d^{2}\right)$

Eigenvalue problems: Rayleigh-Ritz

$A x=\lambda x$

- If A modest size $\lesssim 5000$, standard QR alg. is amazing
- For larger problems, subspace methods: find subspace $B \in \mathbb{R}^{n \times d}$ that approximately contains desired eigenvector(s), and solve.

Classical approach: Rayleigh-Ritz (RR); $B=Q R$ (if B not orthonormal), and solve small eigenproblem

$$
Q^{T} A Q y=\lambda y
$$

$(\lambda, Q y)$ is approximate eigenpair (Ritz pair). Cost (at least) $O\left(n d^{2}\right)$
Can we sketch Rayleigh-Ritz? Doesn't look that way...
One can instead solve

$$
B^{T} A B y=\lambda B^{T} B y
$$

but still $O\left(n d^{2}\right)$ operations and stability issues.

Alternative formulation of Rayleigh-Ritz

Key fact: RR is equivalent to solving $M y=\lambda y$, where

Alternative formulation of Rayleigh-Ritz

Key fact: RR is equivalent to solving $M y=\lambda y$, where

This can be sketched! sRR (sketched Rayleigh-Ritz)

Equivalent formulations:

- RR as rectangular eigenvalue problem $A B y \approx \lambda B y$ sketched version: $S A B y \approx \lambda S B y$
- RR as Galerkin orthogonalization $B^{T}(A B y-\lambda B y)=0$; sketched version: $B^{T} S^{T} S(A B y-\lambda B y)=0$

Possible bases B_{d} for eigenvalue problems

- Krylov subspace
- Block Krylov subspace [Musco-Musco (15)], [Tropp (18)] etc
- Chebyshev/Newton recurrence appealing
- LOBPCG (B via previous block update and current block descent), Jacobi-Davidson (B via linear systems), etc.
- Eigenspace for nearby eigenproblems

We'll show examples with Krylov (to compare with eigs)—but other choices can be more appealing

Experiments: nonsymmetric eigs

B : Krylov (for comparison with eigs)

Nonsymmetric eigenproblem arising in trust-region subproblem (from [Rojas-Santos-Sorensen (08)])rightmost eigenpair desired

Experiments: symmetric eigs via block Lanczos

Laplacian matrix, find (smallest) eigenpairs via block Krylov subspace with block size $b=10$.

Block-Lan: block Lanczos (without full orthogonalization) sRR-Cheb: build subspace via block Chebyshev recurrence sRR-Blan: use block Lanczos subspace for sRR
sRR largely avoids "ghost eigenvalues"

Summary of Part I

- Sketching is VERY useful
- sGMRES offers new opportunities+challenges
- Goals of preconditioner
- Reconsider restart strategies
- Building full-rank basis B_{d}
- sRR can be applied for
- $A x=\lambda B x$, SVD, rectangular eigenproblem

Opportunities\&Problems

- Block (Krylov) methods appealing for eig/SVD on parallal computers
- Detecting/avoiding rank-deficiency of B_{d}
- New way of looking at preconditioning/restarting?
- Opportunities with non-orthogonal linear algebra?

(Most) important result in Numerical Linear Algebra

Given $A \in \mathbb{R}^{m \times n}(m \geq n)$, find low-rank (rank r) approximation

- Optimal solution $A_{r}=U_{r} \Sigma_{r} V_{r}^{T}$ via truncated SVD
$U_{r}=U(:, 1: r), \Sigma_{r}=\Sigma(1: r, 1: r), V_{r}=V(:, 1: r)$, giving

$$
\left\|A-A_{r}\right\|=\left\|\operatorname{diag}\left(\sigma_{r+1}, \ldots, \sigma_{n}\right)\right\|
$$

in any unitarily invariant norm [Horn-Johnson 1985]

- But that costs $O\left(m n^{2}\right)$; look for faster approximation
- Low-rank matrices everywhere

Part II: Randomized low-rank approximation

[Halko-Martinsson-Tropp, SIREV 2011]

1. Form a random matrix $X \in \mathbb{R}^{n \times r}$.
2. Compute $A X$.
3. QR factorization $A X=Q R$.
4. $A \approx Q Q^{T} A=: \hat{A}=\left(Q U_{0}\right) \Sigma_{0} V_{0}^{T}$ is approximate SVD.

- $O(m n r)$ cost for dense A, can be reduced to $O\left(m n \log n+m r^{2}\right)$ via FFT and interp. decomp. (slightly worse accuracy)
- $m r^{2}$ dominant if $r>\sqrt{n}$ or e.g. A sparse
- Near-optimal approximation guarantee: for any $\hat{r}<r$,

$$
\mathbb{E}\|A-\hat{A}\|_{F} \leq\left(1+\frac{r}{r-\hat{r}-1}\right)\left\|A-A_{\hat{r}}\right\|_{F}
$$

where $A_{\hat{r}}$ is the (optimal) rank \hat{r}-truncated SVD

Approximants of form $A X\left(Y^{T} A X\right)^{\dagger} Y^{T} A$

Generalized Nyström (GN) for general $A \in \mathbb{R}^{m \times n}$:

- $X \in \mathbb{R}^{n \times r}, Y \in \mathbb{R}^{m \times(r+\ell)}, \ell=c r$ (we choose $c=0.5$)
- e.g. Gaussian $X_{i j} \sim N(0,1)$
- or SRFT $X=D F S, D:$ diag, F : FFT, S : subsampling (or hashing)
- Near-optimal cost, essentially $A X$ and $Y^{T} A$. Single-pass
- Near-optimal accuracy, comparable to HMT, Nyström

Approximants of form $A X\left(Y^{T} A X\right)^{\dagger} Y^{T} A$

stabilized Generalized Nyström (SGN) for general $A \in \mathbb{R}^{m \times n}$:

- $X \in \mathbb{R}^{n \times r}, Y \in \mathbb{R}^{m \times(r+\ell)}, \ell=c r$ (we choose $c=0.5$)
- e.g. Gaussian $X_{i j} \sim N(0,1)$
- or SRFT $X=D F S, D:$ diag, F : FFT, S : subsampling (or hashing)
- Near-optimal cost, essentially $A X$ and $Y^{T} A$. Single-pass
- Near-optimal accuracy, comparable to HMT, Nyström
- Numerically stable with ϵ-pseudoinverse $\left(U \Sigma V^{T}\right)_{\epsilon}^{\dagger}=V \Sigma_{\epsilon}^{\dagger} U^{T}$

Approximants of form $A X\left(Y^{T} A X\right)^{\dagger} Y^{T} A$

stabilized Generalized Nyström (SGN) for general $A \in \mathbb{R}^{m \times n}$:

- $X \in \mathbb{R}^{n \times r}, Y \in \mathbb{R}^{m \times(r+\ell)}, \ell=c r$ (we choose $c=0.5$)
- e.g. Gaussian $X_{i j} \sim N(0,1)$
- or SRFT $X=D F S, D:$ diag, F : FFT, S : subsampling (or hashing)
- Near-optimal cost, essentially $A X$ and $Y^{T} A$. Single-pass
- Near-optimal accuracy, comparable to HMT, Nyström
- Numerically stable with ϵ-pseudoinverse $\left(U \Sigma V^{T}\right)_{\epsilon}^{\dagger}=V \Sigma_{\epsilon}^{\dagger} U^{T}$
- Key tool for convergence+stability analysis: Marchenko-Pastur "rectangular random matrices are well conditioned" Related to J-L Lemma, RIP, oblivious subspace embedding etc

Approximants of form $A X\left(Y^{T} A X\right)^{\dagger} Y^{T} A$

$$
\left(\text { or } A\left(A^{T} A\right)^{q} X\left(Y^{T} A\left(A^{T} A\right)^{q} X\right)^{\dagger} Y^{T} A\right)
$$

Ω : random matrix (e.g. Gaussian, SRFT)

	X, Y	q	stable?	cost for dense A
HMT 2011	$X=\Omega, Y=A X$	0	$(\sqrt{ })$	$O(m n r)$
Nyström $(A \succ 0)$	$Y=X=\Omega$	0	(\times)	$O\left(m n \log n+m r^{2}\right)$
HMT+Nyström	$Y=X=Q, A \Omega=Q R$	1	(\times)	$O(m n r)$
Subspace iter	$X=\Omega, Y=\tilde{\Omega}$	>1	$(\sqrt{ })$	$O(m n r q)$
TYUC19	$(4$ sketch matrices $)$	0	$(\sqrt{ })$	$O\left(m n \log n+m r^{2}\right)$
TYUC17	$X=\Omega, Y=\tilde{\Omega}$	0	$(\sqrt{ })$	$O\left(m n \log n+m r^{2}\right)$
Clarkson-Woodruff09(C-W)	$X=\Omega, Y=\tilde{\Omega}$	0	(\times)	$O\left(m n \log n+r^{3}\right)$
Demmel-Grigori-Rusciano19	$\mathrm{C}-\mathrm{W}+$ extra term	0	(\times)	$O\left(m n \log n+m r^{2}\right)$
This work, GN	$X=\Omega, Y=\tilde{\Omega}$	0	$\sqrt{ }$	$O\left(m n \log n+r^{3}\right)$

(\times) : unstable examples exist (though often perform ok) $(\sqrt{ })$: conjectured to be stable (no proof)

- GN Combines stability and near-optimal complexity
- explicit constants available: GN $10 m n \log n+\frac{7}{3} r^{3}$ flops

Experiments: dense matrix

Dense 50000×50000 matrix w/ geom. decaying σ_{i}

HMT: Halko-Martinsson-Tropp 11, TYUC: Tropp-Yurtsever-Udell-Cevher 17

- GN and TYUC have same accuracy (as they should)
- GN faster, up to $\approx 10 \mathrm{x}$

Part II in a nutshell

```
\(\mathrm{n}=1000\); \% size
A = gallery('randsvd',n,1e100);
r = 200; \% rank
```

$X=\operatorname{randn}(n, r) ; Y=\operatorname{randn}(n, 1.5 * r) ;$
$\mathrm{AX}=\mathrm{A} * \mathrm{X}$;
$Y A=Y ' * A ;$
YAX $=Y A * X$;
$[Q, R]=\operatorname{qr}(Y A X, 0) ; \quad \%$ stable implementation of pseudoinverse
At $=(\mathrm{AX} / \mathrm{R}) *(\mathrm{Q} * * \mathrm{Y})$;
norm(At-A,'fro')/norm(A,'fro')
ans $=2.8138 \mathrm{e}-15$

For details, please see my E-NLA talk, and arXiv 2009.11392
"Fast and stable randomized low-rank matrix approximation"
Also related: "Randomized low-rank approximation for symmetric indefinite matrices", arXiv 2212.01127 (with T. Park)

Summary

Randomization can help you with:

1. Sketch and solve/precondition

- Part I: linear(/eigen) solver

2. Near-optimal solution with lightning speed

- Part II: low-rank SVD

3. Sample to approximate

- (Part III: rank estimation) (if time permits..)

4. Avoid bad situations by perturbation/blocking

Part I: Rank estimation

In most low-rank algorithms, the rank r is required as input

- If r too low: need to resample A and recompute
- If r too high: wasted computation

A fast rank estimator is thus highly desirable

Definition

$\operatorname{rank}_{\epsilon}(A)$: integer i s.t. $\sigma_{i}(A)>\epsilon \geq \sigma_{i+1}(A)$.

This work: $O\left(m n \log n+r^{3}\right)$ algorithm for rank estimation [with Maike Meier (Oxford), arXiv 2021]

- In many cases, extra cost is much lower (e.g. $O\left(r^{2}\right)$)
- Key idea: Sample the singular values via sketching, $Y^{T} A X$

Goal of a rank estimator

It is usually not necessary (or even possible, with subcubic work) to find the exact ϵ-rank.

We aim to find \hat{r} s.t.

- $\sigma_{\hat{r}+1}(A)=O(\epsilon)$ (say, $\left.\sigma_{\hat{r}+1}(A)<10 \epsilon\right): \hat{r}$ is not a severe underestimate, and
- $\sigma_{\hat{r}}(A)=\Omega(\epsilon)$ (say, $\sigma_{\hat{r}}(A)>0.1 \epsilon$): \hat{r} is not a severe overestimate.

Goal of a rank estimator

It is usually not necessary (or even possible, with subcubic work) to find the exact ϵ-rank.

We aim to find \hat{r} s.t.

- $\sigma_{\hat{r}+1}(A)=O(\epsilon)$ (say, $\left.\sigma_{\hat{r}+1}(A)<10 \epsilon\right): \hat{r}$ is not a severe underestimate, and
- $\sigma_{\hat{r}}(A)=\Omega(\epsilon)$ (say, $\sigma_{\hat{r}}(A)>0.1 \epsilon$): \hat{r} is not a severe overestimate.

Consequently, it suffices to estimate $\sigma_{i}(A)$ to their order of magnitude

Previous studies on rank estimation

- Based on full factorization (e.g. Duersch-Gu 2020, Martinsson-Quintana-Orti-Heavner 2019)
- cubic $O\left(m n^{2}\right)$ complexity
- Ubaru-Saad (2016): polynomial approximation and spectral density estimates using Krylov subspace methods
- complexity difficult to predict
- Andoni-Nguyen (2013): theory that suggest rankest possible, no algorithm

Our algorithm: based on random sketches $A X, Y^{T} A X$ Key fact: $\sigma_{i}(A X) / \sigma_{i}(A)=O(1)$ for leading i, and $\sigma_{i}\left(Y^{T} A X\right) / \sigma_{i}(A X)=O(1)$

- Study of $\sigma_{i}(A X)$ is covariance estimate
- Usually, at least n samples required
- But leading sing vals good with many fewer samples

Main idea: random embedding preserves $O\left(\sigma_{i}\right)$

X, Y : Gaussian (or SRFT), scaled s.t. $\sigma_{i}\left(Q^{T} X\right), \sigma_{i}(Y Q) \in[1-\delta, 1+\delta]$. Key fact: $\frac{\sigma_{i}(A)}{\sigma_{i}\left(Y^{T} A X\right)}=O(1)$ for $i=1,2, \ldots, r$

$$
\begin{aligned}
& \sigma_{i}(A X) / \sigma_{i}(A)=O(1) \text { for leading } i \\
& \quad \text { Let } G \in \mathbb{C}^{n \times r} \text { and } \\
& \quad A G=U_{1} \Sigma_{1}\left(V_{1}^{*} G\right)+U_{2} \Sigma_{2}\left(V_{2}^{*} G\right)=U_{1} \Sigma_{1} G_{1}+U_{2} \Sigma_{2} G_{2}
\end{aligned}
$$

Lemma

For $i=1, \ldots, r$,

$$
\sigma_{\min }\left(\hat{G}_{\{i\}}\right) \leq \frac{\sigma_{i}(A G)}{\sigma_{i}(A)} \leq \sqrt{\sigma_{\max }\left(\tilde{G}_{\{r-i+1\}}\right)^{2}+\left(\frac{\sigma_{r+1}(A) \sigma_{\max }\left(G_{2}\right)}{\sigma_{i}(A)}\right)^{2}}
$$

$\hat{G}_{\{i\}} \in \mathbb{C}^{i \times r}$: first i rows of G_{1}, and $\tilde{G}_{\{r-i+1\}}$ last $r-i+1$ rows of G_{1}. If G is standard Gaussian, $\hat{G}_{\{i\}}, \tilde{G}_{\{r-i+1\}}$, and G_{2} are independent standard Gaussian.

PROOF: Courant-Fisher minimax characterization.

$\sigma_{i}(A X) / \sigma_{i}(A)=O(1)$ cont'd

$$
\sigma_{\min }\left(\hat{G}_{\{i\}}\right) \leq \frac{\sigma_{i}(A G)}{\sigma_{i}(A)} \leq \sqrt{\sigma_{\max }\left(\tilde{G}_{\{r-i+1\}}\right)^{2}+\left(\frac{\sigma_{r+1}(A) \sigma_{\max }\left(G_{2}\right)}{\sigma_{i}(A)}\right)^{2}}
$$

When X scaled Gaussian (embedding)

Theorem

Let $X \in \mathbb{R}^{n \times r}$ with $X_{i j} \sim N(0,1 / r)$. Then for $i=1, \ldots, r$

$$
1-\sqrt{\frac{i}{r}} \leq \mathbb{E} \frac{\sigma_{i}(A X)}{\sigma_{i}(A)} \leq 1+\sqrt{\frac{r-i+1}{r}}+\frac{\sigma_{r+1}}{\sigma_{i}}\left(1+\sqrt{\frac{n-r}{r}}\right) .
$$

Failure probability decays squared-exponentially
Proof: Marchenko-Pastur ("rectangular random matrices are well-conditioned")

- Interpretation: $\frac{\sigma_{i}(A X)}{\sigma_{i}(A)} \approx 1$, esp. for small r

$\sigma_{i}(A X) / \sigma_{i}(A)=O(1)$ cont'd

$$
\sigma_{\min }\left(\hat{G}_{\{i\}}\right) \leq \frac{\sigma_{i}(A G)}{\sigma_{i}(A)} \leq \sqrt{\sigma_{\max }\left(\tilde{G}_{\{r-i+1\}}\right)^{2}+\left(\frac{\sigma_{r+1}(A) \sigma_{\max }\left(G_{2}\right)}{\sigma_{i}(A)}\right)^{2}}
$$

When X general embedding

Theorem

Let \tilde{V}_{1} be A's top right singvecs, and suppose $\sigma_{i}\left(V_{1}^{T} X\right) \in[1-\epsilon, 1+\epsilon]$ for some $\epsilon<1$. Then, for $i=1, \ldots, \tilde{r}$

$$
1-\epsilon \leq \frac{\sigma_{i}(A X)}{\sigma_{i}(A)} \leq \sqrt{(1+\epsilon)^{2}+\left(\frac{\sigma_{\tilde{r}+1}(A)\|X\|_{2}}{\sigma_{i}(A)}\right)^{2}}
$$

ϵ-subspace embedding, (e.g. SRFT (subsampled random Fourier transform), i.e. $X=D F S, D$: diag, F : FFT, S : subsampling), also effective choices for X

Experiments $\sigma_{i}(A X) / \sigma_{i}(A)=O(1)$

$A \in \mathbb{R}^{1000 \times 1000}$

- Leading singvals estimated reliably (when they decay)
- Tail effect nonnegligible (esp. for last $i \approx r$)
- Hence trust only leading (say 90%) samples

2nd step: $\sigma_{i}\left(Y^{T} A X\right) / \sigma_{i}(A X)=O(1)$

Corollary (Combines Boutsidis-Gittens (13) and Tropp (11))

Let $A X \in \mathbb{R}^{m \times r_{1}}$, with $m \geq r_{1}$, and let $Y \in \mathbb{R}^{n \times r_{2}}$ be an SRFT matrix. Let $0<\epsilon<1 / 3$ and $0<\delta<1$. If

$$
r_{2} \geq 6 \eta \epsilon^{-2}\left[\sqrt{r_{1}}+\sqrt{8 \log (m / \delta)}\right]^{2} \log \left(r_{1} / \delta\right)
$$

then with failure probability at most 3δ

$$
\sqrt{1-\epsilon} \leq \frac{\sigma_{i}\left(Y^{T} A X\right)}{\sigma_{i}(A X)} \leq \sqrt{1+\epsilon},
$$

for each $i=1, \ldots, r_{1}$.

$\sigma_{i}\left(Y^{T} A X\right) / \sigma_{i}(A X)=O(1)$

- Approximate orthogonalization: ideas from Blendenpik etc [Avron-Maymounkov-Toledo 10]
- In generalized Nyström, $Y^{T} A X=Q R$ already computed + rank-revealing $\mathrm{QR} \Rightarrow \sigma_{i}\left(Y^{T} A X\right) \approx \operatorname{diag}(R)$; only $O(r)$ extra cost

Experiments: $\sigma_{i}\left(Y^{T} A X\right) / \sigma_{i}(A X)=O(1)$

$A X \in \mathbb{R}^{10^{5} \times 2000}$

$-\left|\frac{\sigma_{i}\left(Y^{T} A X\right)}{\sigma_{i}(A X)}-1\right|$ small esp. for leading singvals

- Reasonable estimates even for $i \approx r$

The rank estimation algorithm

 compute approximate ϵ-rank.
1: Set $\tilde{r}_{1}=$ round $\left(1.1 r_{1}\right)$ to oversample by 10%.
2: Draw $n \times \tilde{r}_{1}$ random embedding matrix X.
3: Form the $m \times \tilde{r}_{1}$ matrix $A X$.
2. Approximate orthogonalization:

4: Set $r_{2}=1.5 \tilde{r}_{1}$, draw an $r_{2} \times m$ SRFT embedding matrix Y.
5: Form the $r_{2} \times \tilde{r}_{1}$ matrix $Y^{T} A X$.

3. Singular value estimates:

6: Compute the first r_{1} singular values of $Y^{T} A X$.
7: Output smallest \hat{r} s.t. $\sigma_{\hat{r}+1}\left(Y^{T} A X\right) \leq \epsilon$.

Complexity: $O\left(m n \log n+r^{3}\right)$

Experiments: rank estimation

SP/FP: slow/fast polynomial decay in $\sigma_{i}(A)$, SE/FE: slow/fast exponential decay

Out of 100 runs; dot area reflects frequency

Experiments: gaps in singular values

$A_{G, I C}$: incoherent singvecs, $A_{G, C}$: coherent singvecs $(V=I)$

For coherent problems, Hashed (not subsampled) RFT helpful
[Cartis-Fiala-Shao 21]
For details, please see preprint Meier-N. "Fast randomized numerical rank estimation" arXiv 2021.

