Randomized Algorithms in Numerical Linear Algebra

Yuji Nakatsukasa Oxford University

Based on joint work with Maike Meier (Oxford), Joel Tropp (Caltech) references: arXiv 2111.00113, 2009.11392, 2105.07388

JSIAM Applied Maths Seminar 2022

Algorithms in Numerical Linear Algebra (NLA)

For $Ax = b, Ax = \lambda(B)x, A = U\Sigma V^T$

- 1. Classical (dense) algorithms (LU, QR, Golub-Kahan)
 - \blacktriangleright (+) Incredibly reliable, backward stable
 - ▶ (-) Cubic complexity $O(n^3)$
- 2. Iterative (e.g. Krylov) algorithms
 - (+) Fast convergence for 'good' matrices: clustered eigenvalues or (GMRES) or well-conditioned (LSQR)
 - \blacktriangleright (-) If not, need preconditioner
- 3. Randomized algorithms
 - (+) Next slide(s)
 - $\blacktriangleright~(-)$ Lack of reproducibility, might lose nice properties, e.g. structure

What can randomization do for you?

- 1. Sketch and solve/precondition
 - least-squares [Rokhlin-Tygert (08)], [Drineas-Mahoney-Muthukrishnan-Sarlós

(10)], [Avron-Maymounkov-Toledo (10)], [Meng-Saunders-Mahoney 14]

- 2. Near-optimal solution with lightning speed
 - e.g. SVD [Halko-Martinsson-Tropp (11)], [Woodruff (14)]
- 3. Sample to approximate
 - Monte Carlo style; often comes with error estimates
 - e.g. matrix multiplication [Drineas-Kannan-Mahoney (06)], trace estimation [Avron-Toledo (11)], [Musco-Musco-Woodruff (20)]
- 4. Avoid pathological situations by perturbation/blocking
 - e.g. eigenvalues [Banks-Vargas-Kulkarni-Srivastava (19)], block Lanczos [Musco-Musco 15], [Tropp 18]

What can randomization do for you?

- 1. Sketch and solve/precondition Part I: linear/eigen solver
 - least-squares [Rokhlin-Tygert (08)], [Drineas-Mahoney-Muthukrishnan-Sarlós (10)], [Avron-Maymounkov-Toledo (10)], [Meng-Saunders-Mahoney 14]
- 2. Near-optimal solution with lightning speed Part II: low-rank SVD
 - ▶ e.g. SVD [Halko-Martinsson-Tropp (11)], [Woodruff (14)]
- 3. Sample to approximate (Part III: rank estimation)
 - Monte Carlo style; often comes with error estimates
 - e.g. matrix multiplication [Drineas-Kannan-Mahoney (06)], trace estimation [Avron-Toledo (11)], [Musco-Musco-Woodruff (20)]
- 4. Avoid pathological situations by perturbation/blocking
 - e.g. eigenvalues [Banks-Vargas-Kulkarni-Srivastava (19)], block Lanczos [Musco-Musco 15], [Tropp 18]

Sketching: Key idea in randomized linear algebra

Roughly: to solve a problem w.r.t. A , form random matrix Y

and work with $Y^T A$ (or sometimes $Y^T AX$) Key insight: the sketch inherits A's low-dimensional structure if present Success stories in

- Low-rank approximation [Halko-Martinsson-Tropp 11, Woodruff 14, N. 20 etc]
- Least-squares [Rokhlin-Tygert 09, Avron-Maymounkov-Toledo 10]
- Linear sytems and eigenvalue problems [N.-Tropp 21]
- Rank estimation [Meier-N. 21]
- and many others

Sketching for least-squares problems

With "reasonable/random" sketch $S \in \mathbb{C}^{s \times n}$ (s > k, say s = 2k),

$$(1-\epsilon)\|Av-b\|_2 \le \|S(Av-b)\|_2 \le (1+\epsilon)\|Av-b\|_2,$$

for some ϵ (not small, e.g. $\epsilon=\frac{1}{2})$ "subspace embedding". Hence the sketched solution \hat{x} satisfies

$$||A\hat{x} - b||_2 \le \frac{1+\epsilon}{1-\epsilon} ||Ax - b||_2.$$

- if $||Ax b||_2$ is small, \hat{x} is a great solution!
- SA in O(nk log n) cost: SRFT, HRFT [Cartis-Fiala-Shao 21], sparse sketch [Sarlos 06, Clarkson-Woodruff 17]

Explaining why sketching works via M-P

Marchenko-Pastur: 'Rectangular random matrices are well-conditioned'

density $\sim \frac{1}{x}\sqrt{(\sqrt{m}+\sqrt{n})-x)(x-(\sqrt{m}-\sqrt{n})}$, support $[\sqrt{m}-\sqrt{n},\sqrt{m}+\sqrt{n}]$

Claim: $\|Av - b\|_2 \approx \|S(Av - b)\|_2$ for all v (\approx : 'same up to O(1) factor')

▶ Let [A, b] = QR. S[A, b] = (SQ)R. Can write $||Av - b||_2 = ||Qw||_2$ and $||S(Av - b)||_2 = ||(SQ)w||_2$.

Now SQ is rectangular+random $\Rightarrow \sigma_i(SQ) \approx 1$ by M-P.

• Hence $||(SQ)w||_2 \approx ||Qw||_2$ for all w.

Related to J-L Lemma, RIP, oblivious subspace embedding etc

GMRES for Ax = b [Saad-Schulz 86]

Minimize residual in Krylov subspace $\mathcal{K}_d(A, b) := \operatorname{span}(b, Ab, \dots, A^{d-1}b)$

$$x_d = \operatorname{argmin}_{x \in \mathcal{K}_d(A,b)} \|Ax - b\|_2$$

i.e., find solution of form $x_d = P_{d-1}(A)b$, P_{d-1} polynomial deg $\leq d-1$

GMRES for Ax = b [Saad-Schulz 86]

Minimize residual in Krylov subspace $\mathcal{K}_d(A, b) := \operatorname{span}(b, Ab, \dots, A^{d-1}b)$

$$x_d = \operatorname{argmin}_{x \in \mathcal{K}_d(A,b)} \|Ax - b\|_2$$

i.e., find solution of form $x_d = P_{d-1}(A)b$, P_{d-1} polynomial deg $\leq d-1$

Arnoldi process: finds orthonormal basis Q_d for $\mathcal{K}_d(A, b)$

and write $x_d = Q_d y$, solve

$$\begin{split} \min_{y} \|AQ_{d}y - b\|_{2} &= \min_{y} \|Q_{d+1}\tilde{H}_{d}y - b\|_{2} \\ &= \min_{y} \left\| \begin{bmatrix} \tilde{H}_{d} \\ 0 \end{bmatrix} y - \|b\|_{2}e_{1} \right\|_{2}, \quad e_{1} = [1, 0, \dots, 0]^{T} \end{split}$$

- ▶ Reduces to Hessenberg least-squares, $O(d^2)$ work
- Overall, d A-mult. + O(nd²) Arnoldi orthogonalization + O(d²) Hessenberg solve.
- Orthogonalization $O(nd^2)$ expensive \rightarrow restarted GMRES

Does sketching help in GMRES?

▶ Apparently NOT, as \tilde{H}_d is almost square+full-rank in

Does sketching help in GMRES?

▶ Apparently NOT, as \tilde{H}_d is almost square+full-rank in

But Q_d need not be orthonormal! Instead, we can find basis B_d s.t. span(B_d) = span(Q_d) and solve

 min
 AB_d
 y
 b
 ||

$$\begin{array}{c|c}
\min_{y} \\
y \\
\end{bmatrix} \\
\begin{bmatrix} AB_d \\
y \\
- b \\
\end{bmatrix} \\
2
\end{array}$$

• $x_d = B_d y$ is still the GMRES solution

Does sketching help in GMRES?

▶ Apparently NOT, as \tilde{H}_d is almost square+full-rank in

▶ But Q_d need not be orthonormal! Instead, we can find basis B_d s.t. span(B_d) = span(Q_d) and solve

$$\min_{y} \left\| AB_{d} y - b \right\|_{2} \Rightarrow \min_{\hat{y}} \left\| SAB_{d} y - b \right\|_{2}$$

• $x_d = B_d y$ is still the GMRES solution

► AB_d is n × d, ripe for sketching! Great if GMRES residual small Does this buy us anything?

7/27

Non-orthogonal linear algebra

- ▶ In GMRES, B_d orthonormal; $O(nd^2)$ cost
- ▶ Not necessary! Works fine as long as $\kappa_2(B_d) < u^{-1} \approx 10^{16}$
- This offers enormous flexibility in choice of basis B_d, eliminating need for Arnoldi orthogonalization
 - Traditionally, want $\kappa_2(B_d) = 1 + O(\epsilon)$
 - Careful analysis (in Lanczos) shows $\kappa_2(B_d) = 1 + O(\sqrt{\epsilon})$ suffices
 - ▶ Sometimes, $\kappa_2(B_d) = O(1)$ is good enough
 - Here we're a lot more flexible; B_d full rank $\kappa_2(B_d) \lesssim 10^{15}$
- Forming $[b, Ab, A^2b, \ldots]$ is still bad idea—explore alternatives

Truncated orthogonalization

 $b_1=b/\|b\|_2$, and for $j=2,3,\ldots$, iteratively form

 $b_j = w_j / ||w_j||_2$ where $w_j = (I - b_{j-1}b_{j-1}^* - \dots - b_{j-k}b_{j-k}^*)(Ab_{j-1})$

for a fixed k (e.g. k = 2, 4)

- Orthogonalize only against last k vectors
- When A symmetric, reduces to Lanczos with k = 2
- Orthogonalization cost O(nd) rather than O(nd²) after d GMRES steps
- Often (not always) works quite well in practice wrt $\kappa_2(B_d)$ growth

Krylov basis via Chebyshev recurrence

$$b_2 = Ab_1;$$
 $b_i = 2Ab_{i-1} - b_{i-2}$ for $i = 3, \dots, d.$

- ▶ $b_i = T_{i-1}(A)b_1$, T_i : Chebyshev polynomial
- \blacktriangleright We obtain AB as a by-product.
- ▶ Shift+scale needed to adapt to the spectrum of *A*.
- No orthogonalization necessary—excellent efficiency (when it works)
- Block version trivially possible

GMRES vs. sGMRES for Ax = b

 $A: n \times n, d: \text{ Krylov dimension, } k: \text{ truncated orthogonalization para.}$ Typically $k \ll d \ll n.$

	Matrix access	Form basis	Sketch	LS solve	Form soln.
Std. GMRES	$dT_{\rm matvec}$	nd^2		d^2	nd
sGMRES- k	$dT_{ m matvec}$	ndk	$nd\log d$	d^3	nd
sGMRES-Cheb	$dT_{ m matvec}$	nd	$nd\log d$	d^3	nd

Experiments with sGMRES: FEM matrix

- sGMRES (k = 4-truncated) achieves 70x speedup over GMRES, comparable to GMRES-10 (restarted every 10 itereations)
- Accuracy of sGMRES is nearly identical to GMRES

Experiments with sGMRES, PSD case

Discretized Laplacian

- ▶ Almost CG speed when $A \succ 0!$
- ▶ Of course, sGMRES does not require $A \succ 0$

"CG speed+GMRES flexibility"

Cautionary note: ill-conditioning

Sometimes $\kappa_2(B)$ grows too fast: FS 680 1 from Matrix Market

- Stagnation of sGMRES is purely a numerical issue
- ▶ Constructing full-rank basis $\kappa_2(B_d) < u^{-1}$ is crucial open problem
 - deflation
 - orthogonalize the sketch
 - ▶ restart once $\kappa_2(B_d) \gtrsim u^{-1}$ (rather than, say d = 100), etc.

Eigenvalue problems: Rayleigh-Ritz

$$Ax = \lambda x$$

▶ If A modest size $\lesssim 5000$, standard QR alg. is amazing

For larger problems, subspace methods: find subspace B ∈ ℝ^{n×d} that approximately contains desired eigenvector(s), and solve.

Eigenvalue problems: Rayleigh-Ritz

$$Ax = \lambda x$$

 $\blacktriangleright~$ If A modest size $\lesssim 5000,$ standard QR alg. is amazing

For larger problems, subspace methods: find subspace B ∈ ℝ^{n×d} that approximately contains desired eigenvector(s), and solve.

Classical approach: **Rayleigh-Ritz** (RR); B = QR (if B not orthonormal), and solve small eigenproblem

$$Q^T A Q y = \lambda y.$$

 (λ, Qy) is approximate eigenpair (Ritz pair). Cost (at least) $O(nd^2)$

Eigenvalue problems: Rayleigh-Ritz

$$Ax = \lambda x$$

 $\blacktriangleright~$ If A modest size $\lesssim 5000,$ standard QR alg. is amazing

For larger problems, subspace methods: find subspace B ∈ ℝ^{n×d} that approximately contains desired eigenvector(s), and solve.

Classical approach: **Rayleigh-Ritz** (RR); B = QR (if B not orthonormal), and solve small eigenproblem

$$Q^T A Q y = \lambda y.$$

 (λ, Qy) is approximate eigenpair (Ritz pair). Cost (at least) $O(nd^2)$ Can we sketch Rayleigh-Ritz? Doesn't look that way...

One can instead solve

$$B^{T}\!ABy = \lambda B^{T}\!By,$$

but still $O(nd^2)$ operations and stability issues.

15/27

Alternative formulation of Rayleigh-Ritz

Key fact: RR is equivalent to solving $My = \lambda y$, where

Alternative formulation of Rayleigh-Ritz

Key fact: RR is equivalent to solving $My = \lambda y$, where

$$\underset{M \in \mathbb{C}^{d \times d}}{\text{minimize}} \left\| AB - B \right\|_{F},$$

This can be sketched! **sRR** (sketched Rayleigh-Ritz)

$$\min_{\hat{M} \in \mathbb{C}^{d \times d}} \quad \left\| \begin{array}{c} s_{AB} \\ \end{array} - \begin{array}{c} s_{B} \\ \end{array} \right\|_{F}$$

Equivalent formulations:

- ► RR as *rectangular* eigenvalue problem $ABy \approx \lambda By$ [Ito-Murota 16] sketched version: $SABy \approx \lambda SBy$
- ► RR as Galerkin orthogonalization B^T(ABy − λBy) = 0; sketched version: B^TS^TS(ABy − λBy) = 0
 16/27

Possible bases B_d for eigenvalue problems

- Krylov subspace
- Block Krylov subspace [Musco-Musco (15)], [Tropp (18)] etc
 - Chebyshev/Newton recurrence appealing
- LOBPCG (B via previous block update and current block descent), Jacobi-Davidson (B via linear systems), etc.
- Eigenspace for nearby eigenproblems

We'll show examples with Krylov (to compare with eigs)—but other choices can be more appealing

Experiments: nonsymmetric eigs

B: Krylov (for comparison with eigs)

Nonsymmetric eigenproblem arising in trust-region subproblem (from

[Rojas-Santos-Sorensen (08)])rightmost eigenpair desired

Experiments: symmetric eigs via block Lanczos

Laplacian matrix, find (smallest) eigenpairs via block Krylov subspace with block size b = 10.

Block-Lan: block Lanczos (without full orthogonalization) sRR-Cheb: build subspace via block Chebyshev recurrence sRR-Blan: use block Lanczos subspace for sRR

sRR largely avoids "ghost eigenvalues"

Summary of Part I

- Sketching is VERY useful
- sGMRES offers new opportunities+challenges
 - Goals of preconditioner
 - Reconsider restart strategies
 - \blacktriangleright Building full-rank basis B_d
- sRR can be applied for
 - $Ax = \lambda Bx$, SVD, rectangular eigenproblem

$Opportunities \& \mathsf{Problems}$

- Block (Krylov) methods appealing for eig/SVD on parallal computers
- Detecting/avoiding rank-deficiency of B_d
- New way of looking at preconditioning/restarting?
- Opportunities with non-orthogonal linear algebra?

(Most) important result in Numerical Linear Algebra Given $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$, find low-rank (rank r) approximation

• Optimal solution $A_r = U_r \Sigma_r V_r^T$ via truncated SVD $U_r = U(:, 1:r), \Sigma_r = \Sigma(1:r, 1:r), V_r = V(:, 1:r)$, giving

$$||A - A_r|| = ||\mathsf{diag}(\sigma_{r+1}, \dots, \sigma_n)||$$

in any unitarily invariant norm [Horn-Johnson 1985]

- But that costs $O(mn^2)$; look for faster approximation
- Low-rank matrices everywhere

[Beckermann-Townsend 17, Gillis 20 etc]

Part II: Randomized low-rank approximation

[Halko-Martinsson-Tropp, SIREV 2011]

- 1. Form a random matrix $X \in \mathbb{R}^{n \times r}$.
- 2. Compute AX.
- 3. QR factorization AX = QR.
- 4. $A \approx QQ^T A =: \hat{A} = (QU_0)\Sigma_0 V_0^T$ is approximate SVD.
- O(mnr) cost for dense A, can be reduced to O(mn log n + mr²) via FFT and interp. decomp. (slightly worse accuracy)
- mr^2 dominant if $r > \sqrt{n}$ or e.g. A sparse
- ▶ Near-optimal approximation guarantee: for any $\hat{r} < r$,

$$\mathbb{E} \|A - \hat{A}\|_F \le \left(1 + \frac{r}{r - \hat{r} - 1}\right) \|A - A_{\hat{r}}\|_F$$

where $A_{\hat{r}}$ is the (optimal) rank \hat{r} -truncated SVD

Approximants of form $AX(Y^TAX)^{\dagger}Y^TA$

Generalized Nyström (GN) for general $A \in \mathbb{R}^{m \times n}$:

$$A \approx AX(Y^{T}AX)^{\dagger}Y^{T}A = AX\left[(Y^{T}AX)^{\dagger} \right] Y^{T}A$$

• $X \in \mathbb{R}^{n \times r}, Y \in \mathbb{R}^{m \times (r+\ell)}, \ \ell = cr$ (we choose c = 0.5)

• e.g. Gaussian
$$X_{ij} \sim N(0,1)$$

• or **SRFT** X = DFS, D: diag, F: FFT, S: subsampling (or hashing)

- ▶ Near-optimal cost, essentially AX and Y^TA . Single-pass
- Near-optimal accuracy, comparable to HMT, Nyström

Approximants of form $AX(Y^TAX)^{\dagger}Y^TA$

stabilized Generalized Nyström (SGN) for general $A \in \mathbb{R}^{m \times n}$:

$$A \approx AX(Y^T A X)^{\dagger}_{\epsilon} Y^T A = AX \left[(Y^T A X)^{\dagger}_{\epsilon} \right] Y^T A$$

 $\blacktriangleright X \in \mathbb{R}^{n \times r}, Y \in \mathbb{R}^{m \times (r+\ell)}, \ \ell = cr \text{ (we choose } c = 0.5\text{)}$

• e.g. Gaussian $X_{ij} \sim N(0, 1)$

• or **SRFT** X = DFS, D: diag, F: FFT, S: subsampling (or hashing)

- ▶ Near-optimal cost, essentially AX and Y^TA . Single-pass
- Near-optimal accuracy, comparable to HMT, Nyström
- Numerically stable with ϵ -pseudoinverse $(U\Sigma V^T)^{\dagger}_{\epsilon} = V\Sigma^{\dagger}_{\epsilon}U^T$

Approximants of form $AX(Y^TAX)^{\dagger}Y^TA$

stabilized Generalized Nyström (SGN) for general $A \in \mathbb{R}^{m \times n}$:

$$A \approx AX(Y^{T}AX)^{\dagger}_{e}Y^{T}A = \left| AX \right| \underbrace{(Y^{T}AX)^{\dagger}_{e}} Y^{T}A$$

 $\blacktriangleright X \in \mathbb{R}^{n \times r}, Y \in \mathbb{R}^{m \times (r+\ell)}, \ \ell = cr \text{ (we choose } c = 0.5\text{)}$

• e.g. Gaussian $X_{ij} \sim N(0, 1)$

• or **SRFT** X = DFS, D: diag, F: FFT, S: subsampling (or hashing)

- ▶ Near-optimal cost, essentially AX and Y^TA . Single-pass
- Near-optimal accuracy, comparable to HMT, Nyström
- Numerically stable with ϵ -pseudoinverse $(U\Sigma V^T)^{\dagger}_{\epsilon} = V\Sigma^{\dagger}_{\epsilon}U^T$
- Key tool for convergence+stability analysis: Marchenko-Pastur "rectangular random matrices are well conditioned" Related to J-L Lemma, RIP, oblivious subspace embedding etc

Approximants of form $AX(Y^TAX)^{\dagger}Y^TA$ (or $A(A^TA)^q X(Y^TA(A^TA)^q X)^{\dagger}Y^TA$)

Ω : random matrix (e.g. Gaussian, SRFT)							
	X,Y	q	stable?	cost for dense A			
HMT 2011	$X = \Omega, Y = AX$	0	()	O(mnr)			
Nyström $(A \succ 0)$	$Y = X = \Omega$	0	(×)	$O(mn\log n + mr^2)$			
HMT+Nyström	$Y = X = Q, A\Omega = QR$	1	(×)	O(mnr)			
Subspace iter	$X=\Omega,Y=\tilde{\Omega}$	> 1	()	O(mnrq)			
TYUC19	(4 sketch matrices)	0	()	$O(mn\log n + mr^2)$			
TYUC17	$X=\Omega,Y=\tilde{\Omega}$	0	()	$O(mn\log n + mr^2)$			
Clarkson-Woodruff09(C-W)	$X=\Omega,Y=\tilde{\Omega}$	0	(×)	$O(mn\log n + r^3)$			
Demmel-Grigori-Rusciano19	C-W+extra term	0	(×)	$O(mn\log n + mr^2)$			
This work, GN	$X=\Omega, Y=\tilde{\Omega}$	0	\checkmark	$O(mn\log n + r^3)$			

(×): unstable examples exist (though often perform ok) ($\sqrt{}$): conjectured to be stable (no proof)

- GN Combines stability and near-optimal complexity
- explicit constants available: GN $10mn\log n + \frac{7}{3}r^3$ flops

Experiments: dense matrix

Dense 50000×50000 matrix w/ geom. decaying σ_i

HMT: Halko-Martinsson-Tropp 11, TYUC: Tropp-Yurtsever-Udell-Cevher 17

- GN and TYUC have same accuracy (as they should)
- GN faster, up to $\approx 10x$

```
Part II in a nutshell
   n = 1000: % size
   A = gallery('randsvd',n,1e100);
   r = 200: % rank
   X = randn(n,r); Y = randn(n,1.5*r);
   AX = A * X:
   YA = Y' * A:
   YAX = YA * X:
    [Q,R] = qr(YAX,0); % stable implementation of pseudoinverse
   At = (AX/R)*(Q'*YA):
   norm(At-A,'fro')/norm(A,'fro')
   ans = 2.8138e-15
```

For details, please see my E-NLA talk, and arXiv 2009.11392 "Fast and stable randomized low-rank matrix approximation" Also related: "Randomized low-rank approximation for symmetric indefinite matrices", arXiv 2212.01127 (with T. Park)

Summary

Randomization can help you with:

- 1. Sketch and solve/precondition
 - Part I: linear(/eigen) solver
- 2. Near-optimal solution with lightning speed
 - Part II: low-rank SVD
- 3. Sample to approximate
 - (Part III: rank estimation) (if time permits..)
- 4. Avoid bad situations by perturbation/blocking

Part I: Rank estimation

In most low-rank algorithms, the rank \boldsymbol{r} is required as input

- \blacktriangleright If r too low: need to resample A and recompute
- \blacktriangleright If r too high: wasted computation

A fast rank estimator is thus highly desirable

Definition

$$\operatorname{rank}_{\epsilon}(A)$$
: integer *i* s.t. $\sigma_i(A) > \epsilon \ge \sigma_{i+1}(A)$.

This work: $O(mn\log n + r^3)$ algorithm for rank estimation

[with Maike Meier (Oxford), arXiv 2021]

- ln many cases, extra cost is much lower (e.g. $O(r^2)$)
- Key idea: Sample the singular values via sketching, $Y^T A X$

Goal of a rank estimator

It is usually not necessary (or even possible, with subcubic work) to find the exact ϵ -rank.

We aim to find \hat{r} s.t.

▶
$$\sigma_{\hat{r}+1}(A) = O(\epsilon)$$
 (say, $\sigma_{\hat{r}+1}(A) < 10\epsilon$): \hat{r} is not a severe underestimate, and

• $\sigma_{\hat{r}}(A) = \Omega(\epsilon)$ (say, $\sigma_{\hat{r}}(A) > 0.1\epsilon$): \hat{r} is not a severe overestimate.

Goal of a rank estimator

It is usually not necessary (or even possible, with subcubic work) to find the exact ϵ -rank.

We aim to find \hat{r} s.t.

▶
$$\sigma_{\hat{r}+1}(A) = O(\epsilon)$$
 (say, $\sigma_{\hat{r}+1}(A) < 10\epsilon$): \hat{r} is not a severe underestimate, and

• $\sigma_{\hat{r}}(A) = \Omega(\epsilon)$ (say, $\sigma_{\hat{r}}(A) > 0.1\epsilon$): \hat{r} is not a severe overestimate.

Consequently, it suffices to estimate $\sigma_i(A)$ to their order of magnitude

Previous studies on rank estimation

- Based on full factorization (e.g. Duersch-Gu 2020, Martinsson-Quintana-Orti-Heavner 2019)
 - cubic $O(mn^2)$ complexity
- Ubaru-Saad (2016): polynomial approximation and spectral density estimates using Krylov subspace methods
 - complexity difficult to predict
- Andoni-Nguyen (2013): theory that suggest rankest possible, no algorithm

Our algorithm: based on random sketches AX, Y^TAX

Key fact: $\sigma_i(AX)/\sigma_i(A) = O(1)$ for leading *i*, and $\sigma_i(Y^TAX)/\sigma_i(AX) = O(1)$

- Study of $\sigma_i(AX)$ is covariance estimate
 - \blacktriangleright Usually, at least n samples required
 - But **leading** sing vals good with many fewer samples

X, Y: Gaussian (or SRFT), scaled s.t. $\sigma_i(Q^T X), \sigma_i(YQ) \in [1 - \delta, 1 + \delta].$ Key fact: $\frac{\sigma_i(A)}{\sigma_i(Y^T A X)} = O(1)$ for i = 1, 2, ..., r $^{31/27}$
$$\begin{split} \sigma_i(AX)/\sigma_i(A) &= O(1) \text{ for leading } i\\ \text{Let } G \in \mathbb{C}^{n \times r} \text{ and}\\ AG &= U_1 \Sigma_1(V_1^*G) + U_2 \Sigma_2(V_2^*G) = U_1 \Sigma_1 G_1 + U_2 \Sigma_2 G_2, \end{split}$$

Lemma

For i = 1, ..., r,

$$\sigma_{\min}(\hat{G}_{\{i\}}) \le \frac{\sigma_i(AG)}{\sigma_i(A)} \le \sqrt{\sigma_{\max}(\tilde{G}_{\{r-i+1\}})^2 + \left(\frac{\sigma_{r+1}(A)\sigma_{\max}(G_2)}{\sigma_i(A)}\right)^2}$$

 $\hat{G}_{\{i\}} \in \mathbb{C}^{i \times r}$: first *i* rows of G_1 , and $\tilde{G}_{\{r-i+1\}}$ last r-i+1 rows of G_1 . If *G* is standard Gaussian, $\hat{G}_{\{i\}}$, $\tilde{G}_{\{r-i+1\}}$, and G_2 are independent standard Gaussian.

PROOF: Courant-Fisher minimax characterization.

 $\sigma_i(AX)/\sigma_i(A) = O(1)$ cont'd

$$\sigma_{\min}(\hat{G}_{\{i\}}) \le \frac{\sigma_i(AG)}{\sigma_i(A)} \le \sqrt{\sigma_{\max}(\tilde{G}_{\{r-i+1\}})^2 + \left(\frac{\sigma_{r+1}(A)\sigma_{\max}(G_2)}{\sigma_i(A)}\right)^2}$$

When X scaled Gaussian (embedding)

Theorem

Let
$$X \in \mathbb{R}^{n \times r}$$
 with $X_{ij} \sim N(0, 1/r)$. Then for $i = 1, \ldots, r$

$$1 - \sqrt{\frac{i}{r}} \le \mathbb{E}\frac{\sigma_i(AX)}{\sigma_i(A)} \le 1 + \sqrt{\frac{r-i+1}{r}} + \frac{\sigma_{r+1}}{\sigma_i} \left(1 + \sqrt{\frac{n-r}{r}}\right).$$

Failure probability decays squared-exponentially

Proof: Marchenko-Pastur ("rectangular random matrices are well-conditioned")

▶ Interpretation: $\frac{\sigma_i(AX)}{\sigma_i(A)} \approx 1$, esp. for small r

 $\sigma_i(AX)/\sigma_i(A) = O(1)$ cont'd

$$\sigma_{\min}(\hat{G}_{\{i\}}) \le \frac{\sigma_i(AG)}{\sigma_i(A)} \le \sqrt{\sigma_{\max}(\tilde{G}_{\{r-i+1\}})^2 + \left(\frac{\sigma_{r+1}(A)\sigma_{\max}(G_2)}{\sigma_i(A)}\right)^2}$$

When X general embedding

Theorem

Let \tilde{V}_1 be A's top right singues, and suppose $\sigma_i(V_1^T X) \in [1 - \epsilon, 1 + \epsilon]$ for some $\epsilon < 1$. Then, for $i = 1, ..., \tilde{r}$

$$1 - \epsilon \le \frac{\sigma_i(AX)}{\sigma_i(A)} \le \sqrt{(1 + \epsilon)^2 + \left(\frac{\sigma_{\tilde{r}+1}(A) \|X\|_2}{\sigma_i(A)}\right)^2}$$

 ϵ -subspace embedding, (e.g. SRFT (subsampled random Fourier transform), i.e. X = DFS, D: diag, F: FFT, S: subsampling), also effective choices for X

Experiments $\sigma_i(AX)/\sigma_i(A) = O(1)$

 $A \in \mathbb{R}^{1000 \times 1000}$

Leading singvals estimated reliably (when they decay)

- ▶ Tail effect nonnegligible (esp. for last $i \approx r$)
- ▶ Hence trust only leading (say 90%) samples

2nd step:
$$\sigma_i(Y^TAX)/\sigma_i(AX) = O(1)$$

Corollary (Combines Boutsidis-Gittens (13) and Tropp (11))

Let $AX \in \mathbb{R}^{m \times r_1}$, with $m \ge r_1$, and let $Y \in \mathbb{R}^{n \times r_2}$ be an SRFT matrix. Let $0 < \epsilon < 1/3$ and $0 < \delta < 1$. If

$$r_2 \ge 6\eta \epsilon^{-2} \left[\sqrt{r_1} + \sqrt{8\log(m/\delta)} \right]^2 \log(r_1/\delta),$$

then with failure probability at most 3δ

$$\sqrt{1-\epsilon} \le \frac{\sigma_i(Y^T A X)}{\sigma_i(A X)} \le \sqrt{1+\epsilon},$$

for each $i = 1, ..., r_1$.

 $\sigma_i(Y^T A X) / \sigma_i(A X) = O(1)$

- Approximate orthogonalization: ideas from Blendenpik etc [Avron-Maymounkov-Toledo 10]
- ▶ In generalized Nyström, $Y^T A X = QR$ already computed + rank-revealing QR $\Rightarrow \sigma_i(Y^T A X) \approx \text{diag}(R)$; only O(r) extra cost

• $\left|\frac{\sigma_i(Y^TAX)}{\sigma_i(AX)} - 1\right|$ small esp. for leading singvals

▶ Reasonable estimates even for $i \approx r$

The rank estimation algorithm

Algorithm Given $A \in \mathbb{C}^{m \times n}$, tolerance ϵ and an upper bound for rank r_1 , compute approximate ϵ -rank.

- 1: Set $\tilde{r}_1 = \operatorname{round}(1.1r_1)$ to oversample by 10%.
- 2: Draw $n \times \tilde{r}_1$ random embedding matrix X.
- 3: Form the $m \times \tilde{r}_1$ matrix AX.

2. Approximate orthogonalization:

4: Set $r_2 = 1.5 \tilde{r}_1$, draw an $r_2 \times m$ SRFT embedding matrix Y.

5: Form the $r_2 \times \tilde{r}_1$ matrix $Y^T A X$.

3. Singular value estimates:

- 6: Compute the first r_1 singular values of $Y^T A X$.
- 7: Output smallest \hat{r} s.t. $\sigma_{\hat{r}+1}(Y^T A X) \leq \epsilon$.

Complexity: $O(mn\log n + r^3)$

Experiments: rank estimation

SP/FP: slow/fast polynomial decay in $\sigma_i(A)$, SE/FE: slow/fast exponential decay

Out of 100 runs; dot area reflects frequency

Experiments: gaps in singular values

 $A_{G,IC}$: incoherent singuecs, $A_{G,C}$: coherent singuecs (V = I)

For coherent problems, *Hashed* (not subsampled) RFT helpful [Cartis-Fiala-Shao 21] For details, please see preprint Meier-N. "Fast randomized numerical rank estimation" arXiv 2021. 40/27